37 research outputs found

    Numerical extraction of a macroscopic pde and a lifting operator from a lattice Boltzmann model

    Full text link
    Lifting operators play an important role in starting a lattice Boltzmann model from a given initial density. The density, a macroscopic variable, needs to be mapped to the distribution functions, mesoscopic variables, of the lattice Boltzmann model. Several methods proposed as lifting operators have been tested and discussed in the literature. The most famous methods are an analytically found lifting operator, like the Chapman-Enskog expansion, and a numerical method, like the Constrained Runs algorithm, to arrive at an implicit expression for the unknown distribution functions with the help of the density. This paper proposes a lifting operator that alleviates several drawbacks of these existing methods. In particular, we focus on the computational expense and the analytical work that needs to be done. The proposed lifting operator, a numerical Chapman-Enskog expansion, obtains the coefficients of the Chapman-Enskog expansion numerically. Another important feature of the use of lifting operators is found in hybrid models. There the lattice Boltzmann model is spatially coupled with a model based on a more macroscopic description, for example an advection-diffusion-reaction equation. In one part of the domain, the lattice Boltzmann model is used, while in another part, the more macroscopic model. Such a hybrid coupling results in missing data at the interfaces between the different models. A lifting operator is then an important tool since the lattice Boltzmann model is typically described by more variables than a model based on a macroscopic partial differential equation.Comment: submitted to SIAM MM

    A Unified Analysis of Balancing Domain Decomposition by Constraints for Discontinuous Galerkin Discretizations

    Get PDF
    The BDDC algorithm is extended to a large class of discontinuous Galerkin (DG) discretizations of second order elliptic problems. An estimate of C(1 + log(H/h))2 is obtained for the condition number of the preconditioned system where C is a constant independent of h or H or large jumps in the coefficient of the problem. Numerical simulations are presented which confirm the theoretical results. A key component for the development and analysis of the BDDC algorithm is a novel perspective presenting the DG discretization as the sum of element-wise “local” bilinear forms. The element-wise perspective allows for a simple unified analysis of a variety of DG methods and leads naturally to the appropriate choice for the subdomain-wise local bilinear forms. Additionally, this new perspective enables a connection to be drawn between the DG discretization and a related continuous finite element discretization to simplify the analysis of the BDDC algorithm.Boeing CompanyMassachusetts Institute of Technology (Zakhartchenko Fellowship

    The Moment Guided Monte Carlo method for the Boltzmann equation

    Full text link
    In this work we propose a generalization of the Moment Guided Monte Carlo method developed in [11]. This approach permits to reduce the variance of the particle methods through a matching with a set of suitable macroscopic moment equations. In order to guarantee that the moment equations provide the correct solutions, they are coupled to the kinetic equation through a non equilibrium term. Here, at the contrary to the previous work in which we considered the simplified BGK operator, we deal with the full Boltzmann operator. Moreover, we introduce an hybrid setting which permits to entirely remove the resolution of the kinetic equation in the limit of infinite number of collisions and to consider only the solution of the compressible Euler equation. This modification additionally reduce the statistical error with respect to our previous work and permits to perform simulations of non equilibrium gases using only a few number of particles. We show at the end of the paper several numerical tests which prove the efficiency and the low level of numerical noise of the method.Comment: arXiv admin note: text overlap with arXiv:0908.026

    Compactness of linearized kinetic operators

    Get PDF
    International audienceThis article reviews various results on the compactness of the linearized Boltzmann operator and of its generalization to mixtures of non-reactive monatomic gases

    A comparison of homogenization and standard mechanics analyses for periodic porous composites

    Full text link
    Composite material elastic behavior has been studied using many approaches, all of which are based on the concept of a Representative Volume Element (RVE). Most methods accurately estimate effective elastic properties when the ratio of the RVE size to the global structural dimensions, denoted here as ν, goes to zero. However, many composites are locally periodic with finite ν. The purpose of this paper was to compare homogenization and standard mechanics RVE based analyses for periodic porous composites with finite ν. Both methods were implemented using a displacement based finite element formulation. For one-dimensional analyses of composite bars the two methods were equivalent. Howver, for two- and three-dimensional analyses the methods were quite different due to the fact that the local RVE stress and strain state was not determined uniquely by the applied boundary conditions. For two-dimensional analyses of porous periodic composites the effective material properties predicted by standard mechanics approaches using multiple cell RVEs converged to the homogenization predictions using one cell. In addition, homogenization estimates of local strain energy density were within 30% of direct analyses while standard mechanics approaches generally differed from direct analyses by more than 70%. These results suggest that homogenization theory is preferable over standard mechanics of materials approaches for periodic composites even when the material is only locally periodic and ν is finite.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47812/1/466_2004_Article_BF00369853.pd

    Calcul du buckling associe a une equation de transport de neutrons dans un milieu periodique

    No full text
    Available from CEN Saclay, Service de Documentation, 91191 Gif-sur-Yvette Cedex (France) / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc
    corecore